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A classical dynamical system consists of a compact Hausdorff
space X together with a homeomorphism σ. Define
α(f) = f ◦ σ−1 for f ∈ C(X). For any C∗-algebra A, an
isomorphism from A onto itself is called an automorphism.
Denote by Aut(A) the automorphism group of A. Then
α ∈Aut(C(X)). Also Z→Aut(A) given by n→ αn is a group
homomorphism.

Denote by Aoα Z the crossed products
by automorphisms α on C*-algebras A.

A dynamical system (X,σ) is said to be minimal if X has no
proper closed σ-invariant subset.
If (X,σ) is minimal and X is infinite, then C(X) oσ Z is a
unital simple C∗-algebra.
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We will use the following convention:

Let A be a C*-algebra. We denote by Aut(A) the
automorphism group of A.

Let A be a C*-algebra and α ∈ Aut(A). We say A is
α-simple if A does not have any non-trivial α-invariant closed
two-sided ideals.

Let A be a unital C*-algebra and T (A) the compact convex
set of tracial states of A.
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Theorem (F. Putnam)

Let X be a Cantor set and σ : X → X a minimal
homeomorphism. Then crossed product C(X) oα Z is a simple AT
algebras (direct limits of circle algebras) with real rank zero.

Theorem (G. Elliott and D. Evans)

Irrational rotation algebras Aθ are simple AT algebras with real
rank zero.
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Theorem (G. Elliott)

Let A and B be a unital simple AT-algebra with real rank zero. If
there is an order isomorphism
α : (K0(A),K0(A)+, [1A],K1(A))→ (K0(B),K0(B)+, [1B ],K1(B)).

Then we have an isomorphism h : A→ B such that h∗ = α.

Definition (H. Lin)

Let A be a unital simple C*-algebra. Then A is said to have
tracial (topological) rank zero if for any ε > 0, any finite set
F ⊂ A and any nonzero positive element a ∈ A, there exists a
finite dimensional C*-subalgebra B ⊂ A with idB = p such that:
(1) ‖px− xp‖ < ε for all x ∈ F .
(2) pxp ∈ε B for all x ∈ F .
(3) [1− p] ≤ [a], i.e. there is a projection q ∈ aAa and a partial
isometry v ∈ A such that v∗v = 1− p and vv∗ = q.
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Theorem (H. Lin)

Let A and B be unital separable simple C∗-algebras with tracial
rank zero which satisfy the UCT. If there is an order isomorphism
α : (K0(A),K0(A)+, [1A],K1(A))→ (K0(B),K0(B)+, [1B ],K1(B)).

Then there exists h : A→ B such that h∗ = α.

Theorem (H. Lin and N. C. Phillips)

Let X be an infinite compact metric space with finite covering
dimensional and let α: X → X be a minimal homeomorphism, the
associated crossed product C*-algebra A = C(X) oα Z has tracial
rank zero whenever the image of K0(A) in Aff(T (A)) is dense.
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Theorem (A. S. Toms and W. Winter)

Let C denote the class of C∗-algebras having the following
properties:
(1) every A ∈ C has the form C(X) oα Z for some infinite,
compact, finite dimensional, metrizable space X and minimal
homeomorphism α : X → X;
(2) the projections of every A ∈ C separate traces.
If A,B ∈ C and there is a graded ordered isomorphism
φ : K∗(A)→ K∗(B), then there is a ∗-isomorphism Φ : A→ B
which induces φ.
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α-simple action on C∗-algebras

We don’t know what happen when C*-algebras are neither
commutative nor simple.

In this talk, we consider the following case: let X be a Cantor
set, let A be a unital separable simple amenable C*-algebra
with TR(A⊗Mp∞) ≤ 1 which satisfies the Universal
Coefficient Theorem, we consider the C*-algebra C(X,A), all
continuous functions from X to A. When A is isomorphic to
C, it is just the Cantor set case. When C(X,A) is not
isomorphic to C, C(X,A) is neither commutative nor simple.
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α-simple action on C∗-algebras

Definition

Let X be a compact metric space and let A be a C*-algebra, we
say a map
β : X → Aut(A) is strongly continuous if for any {xn} with
d(xn, x)→ 0 when n→∞, we have ‖βxn(a)− βx(a)‖ → 0 for all
a ∈ A.

Lemma

Let X be a compact metric space, let A be a unital simple
C*-algebra and α ∈Aut(C(X,A)). Then C(X,A) is α-simple if
and only if there is a minimal homeomorphism σ from X to X and
there is a strongly continuous map β from X to Aut(A), denote by
x to βx, such that α(f)(x) = βσ−1(x)(f(σ−1(x))).
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α-simple action on C∗-algebras

Lemma

Let X be an infinite compact metric space, let A be a unital simple
C*-algebra and α ∈Aut(C(X,A)). Then C(X,A) is α-simple if
and only if the crossed product C(X,A) oα Z is simple.
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Large C∗-subalgebras of crossed products

Let u be the unitary implementing the action of α in the
transformation group C*-algebra C(X,A) oα Z, then
ufu∗ = α(f). For a nonempty closed subset Y ⊂ X, we
define the C*-subalgebra BY to be

BY = C∗(C(X,A), uC0(X\Y,A)) ⊂ C(X,A) oα Z.

We will often let B denote the transformation group
C*-algebra C(X,A) oα Z. If Y1 ⊃ Y2 ⊃ · · · is a decreasing
sequence of closed subsets of X with ∩∞n=1Yn = {y}, then
B{y} = limBYn .
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Large C∗-subalgebras of crossed products

Lemma

Let X be an infinite compact metric space, let A be a unital
simple C*-algebra and α ∈Aut(C(X,A)). If C(X,A) is α-simple,
then for any y ∈ X, we have B{y} is simple.

Lemma

Let X be a Cantor set, let A be a unital separable simple amenable
C*-algebra with tracial rank zero which satisfies the UCT
(Universal Coefficient Theorem), and let α ∈ Aut(C(X,A)).
Suppose C(X,A) is α-simple. It follows that for any y ∈ X, the
C*-algebra B{y} has tracial rank zero.
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Large C∗-subalgebras of crossed products

Lemma

Let X be a Cantor set, let A be a stably finite unital C*-algebra
and α ∈Aut(C(X,A)). If there is a minimal homeomorphism σ
from X to X and a strongly continuous map β from X to Aut(A),
denote by x to βx, such that α(f)(x) = βσ−1(x)(f(σ−1(x))). Let
B = C(X,A) oα Z, and let y ∈ X and Y be a clopen
neighborhood of x ∈ X. Suppose for any ε > 0 and any finite
subset F ⊂ B, there is a partial isometry w ∈ B{y} such that
w∗w = 1Y , ww∗ = 1σN (Y ) and ‖wf |Y − f |σN (Y )w‖ < ε

4 for all
f ∈ F . Then there is a projection p ∈ B{y} such that:
(1) ‖pa− ap‖ < ε for all a ∈ F .
(2) pap ∈ pB{y}p for all a ∈ F .
(3) τ(1− p) < ε for all τ ∈ T (B{y}).
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Large C∗-subalgebras of crossed products

Lemma

Let X be a Cantor set, let A be a stably finite unital C*-algebra
and α ∈Aut(C(X,A)). If there is a minimal homeomorphism σ
from X to X and a strongly continuous map β from X to Aut(A),
denote by x to βx, such that α(f)(x) = βσ−1(x)(f(σ−1(x))),
where βσ−1(x) is approximately unitary equivalent to the identity
map for all x ∈ X. Let B = C(X,A) oα Z, and let y ∈ X and Y
be a clopen neighborhood of x ∈ X. Then for any ε > 0 and any
finite subset F ⊂ B, there is a partial isometry w ∈ B{y} such that
w∗w = 1Y , ww∗ = 1σN (Y ) and ‖wf |Y − f |σN (Y )w‖ < ε

4 for all
f ∈ F .
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For the case that TR(A) = 0

Theorem

Let X be a Cantor set, and let A be a unital separable simple
amenable C*-algebra with tracial rank zero which satisfies the
UCT. Let C(X,A) denote all continuous functions from X to A
and α be an automorphism of C(X,A). Suppose that C(X,A) is
α-simple and [α|1⊗A] = [id|1⊗A] in KL(1⊗A,C(X,A)). Then
C(X,A) oα Z is a unital simple C*-algebra with tracial rank zero.
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For the case that TR(A⊗Mp∞) ≤ 1

Theorem

Let X be a Cantor set, and let A be a unital separable simple
amenable C*-algebra which is Z-stable and satisfies
TR(A⊗Mp∞) ≤ 1 and the UCT. Let C(X,A) denote all
continuous functions from X to A and α be an automorphism of
C(X,A). Suppose that
(1) C(X,A) is α-simple,
(2) [α|1⊗A] = [id|1⊗A] in KL(1⊗A,C(X,A)),
(3) τ(α(1⊗ a)) = τ(1⊗ a) for all τ ∈ T (C(X,A)), and
(4) α‡(1⊗ u) = id‡(1⊗ u) in U∞(C(X,A))/CU∞(C(X,A)).
Then C(X,A) oα Z is a unital simple C*-algebra with
TR((C(X,A) oα Z)⊗Mp∞) ≤ 1.
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For the case that A is Tn

In this section, X denotes the Cantor set, T denotes the circle, and
Tn denotes the n-dimensional torus.
For a compact Hausdorff space Y , Homeo(Y ) is used to denote
the set of all the homeomorphisms of Y.
As the Cantor set X is totally disconnected, we can write a
homeomorphism of X × Tn as σ × ϕ(the skew product form), with
σ ∈Homeo(X) and ϕ : X → Homeo(Tn) being continuous, and

σ × ϕ : X × Tn → X × Tn

defined by

(x, t1, t2, . . . , tn)→ (σ(x), ϕ(t1, t2, . . . , tn)).
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For the case that A is Tn

For the case that the cocycles take values in rotation groups, we
can further express σ × ϕ as
(X × T× T× · · · × T, σ ×Rξ1 ×Rξ2 · · · ×Rξn), with
Rξn : X → T continuous, and

σ ×Rξ1 ×Rξ2 · · · ×Rξn : X × Tn → X × Tn

defined by

(x, t1, t2, . . . , tn)→ (σ(x), t1 + ξ1(x), t2 + ξ2(x), . . . , tn + ξn(x)).
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For the case that A is Tn

Lemma

If (σ ×Rξ1 ×Rξ2 · · · ×Rξn , X × Tn) is minimal, then for any
y ∈ X, B{y} has tracial rank one.
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For the case that A is Tn

Theorem

Let X × T1 × · · · × Tn to denote the product of the Cantor set
and n dimensional torus. Let σ ×Rξ1 × · · · ×Rξn be a minimal
homeomorphism on X × T1 × · · · × Tn. Let B be the crossed
product C∗-algebra
C∗(Z, X ×T1 × · · · ×Tn, σ×Rξ1 × · · · ×Rξn). Then TR(B) ≤ 1.
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Thank you!
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